

Skopje, North Macedonia 04-06 June 2024

Phoenix Rising from Ashes: Safeguarding Ash Trees Against Invasive Threats

Kateryna Davydenko

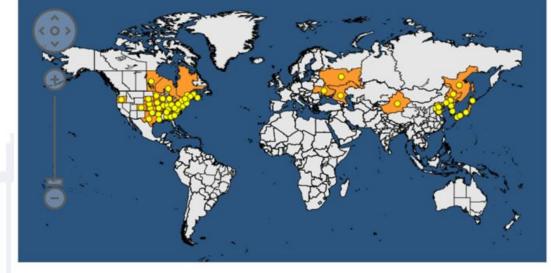
Ukrainian Research Institute of Forestry & Forest Melioration Swedish University of Agricultural Science

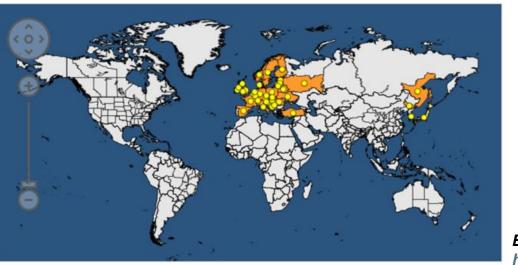
Skopje, North Macedonia 04-06 June 2024

Introduction and expansion two invasive species

Ash dieback (ADB) caused by invasive fungus *Hymenoscyphus fraxineus* ADB presents in most parts of the EU *F.excelsior* is high susceptible

Emerald ash borer, invasive beetles, Agrilus planipennis, phloem-boring beetle EAB presents in eastern Ukraine (2019) F. pennsylvanica is high susceptible Hymenoscyphus fraxineus(CHAAFR)





THE ROLE OF INVASIVE SPECIES IN URBAN FOREST PLANNING

Skopje, North Macedonia 04-06 June 2024

EAB

On its native range, EAB colonized *F. mandshul* and *F. chinensis* without significant damage. In secondary ranges, EAB displays a broader he range, infesting all Fraxinus species and even r ash host, cultivated olive (Olea europaea L.). Over the past two decades, the range of EAB expanded, currently found in 36 US states, five Canadian provinces, and 20 regions of Russia From 2019 – in Ukraine

EPPO (2024) Agrilus planipennis. EPPO datasheets on pests recommended for regulation. <u>https://gd.eppo.int</u> (accessed 2024-06-01)

ADB

On its native range, EAB colonized *F. mandshi* without significant damage. In secondary ranges, EAB displays a broader I range, infesting all Fraxinus species and even ash host, *Phillyrea angustifolia*.

Over the past two decades, the range of EAB expanded, currently found in all European cour From 2013 – in Ukraine

EPPO (2024). Hymenoscyphus fraxineus. EPPO database. https://gd.eppo.int/taxon/CHAAFR/distribution (accessed 2024-06-01)

Skopje, North Macedonia 04-06 June 2024

Ash dieback in Europe

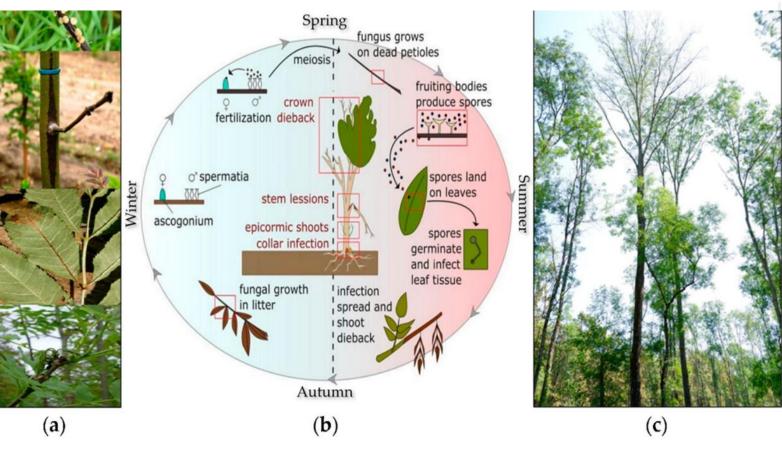
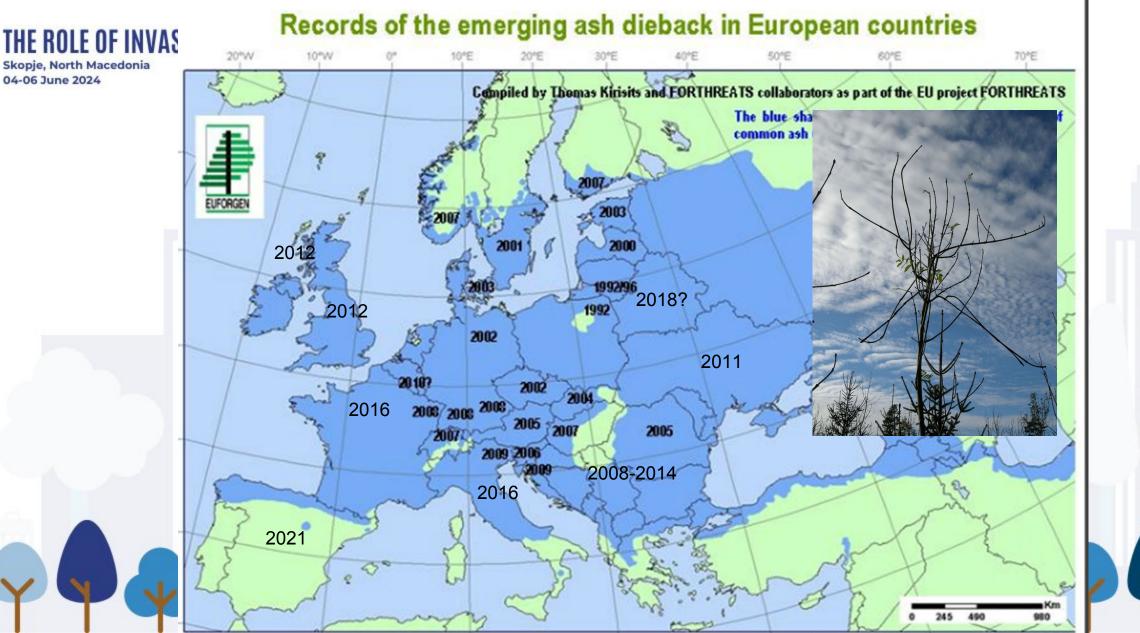
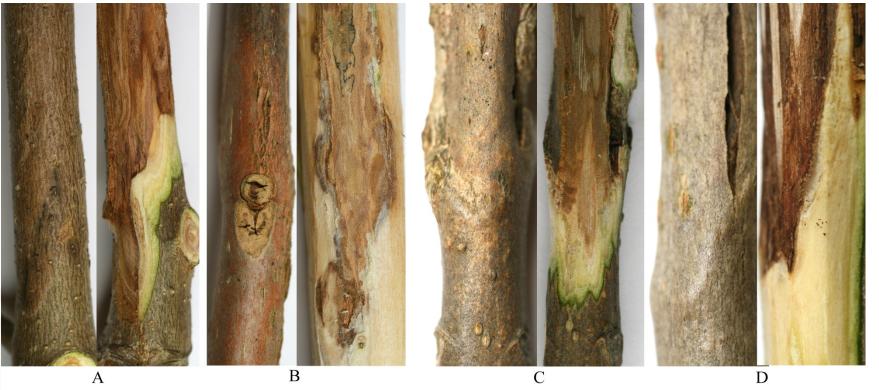


Figure 3. Ash dieback: symptoms and life cycle (Gašparović M, Pilaš I, Klobučar D, Gašparović I. (2023) Monitoring Ash Dieback in Europe—An Unrevealed Perspective for Remote Sensing? Remote Sensing): (a) *Hymenoscyphus fraxineus* disease symptoms: mushroom-like fruiting bodies (top); diamond-shaped lesions (middle upper); shoot wilting and leaf necrosis (middle lower and bottom) (source: Forest Research, <u>www.forestresearch.gov.uk</u>, accessed on 10 January 2023). (b)Lifecycle and symptoms (source: Teagasc—Agriculture and Food Development Agency, <u>www.teagasc.ie</u>, accessed on 10 January 2023) and (c) narrow-leaved ash (*Fraxinus angustifolia*) dieback; location Radinje forest, Croatia.

Skopje, North Macedonia 04-06 June 2024

ASH DIEBACK: SYMPTOMS, MONITORING AND MANAGEMENT


First <u>detection 1992 (1996)</u> <u>Chalara fraxinea (2006)</u> <u>Hymenoscyphus albidus (2009)</u> Hymenoscyphus pseudoalbidus (2010) **Hymenoscyphus fraxineus** (2014)



Skopje, North Macedonia 04-06 June 2024

Necrotic lesions of H. fraxineus on shoots

A - *Fraxinus nigra*, B - *F. pennsylvanica*, C - *F. americana*, D - *F. mandshurica* (Drenkhan & Hanso 2010).

Skopje, North Macedonia 04-06 June 2024

SYMPTOM S

European ash trees infected with *H. fraxineus* have an estimated mortality rate of 85% in plantations and 69% in woodland populations (Coker et al., 2019).

Skopje, North Macedonia 04-06 June 2024

Skopje, North Macedonia 04-06 June 2024

SYMPTOMS

© T.KIRISITS, IFFF-BOKU, Vienna

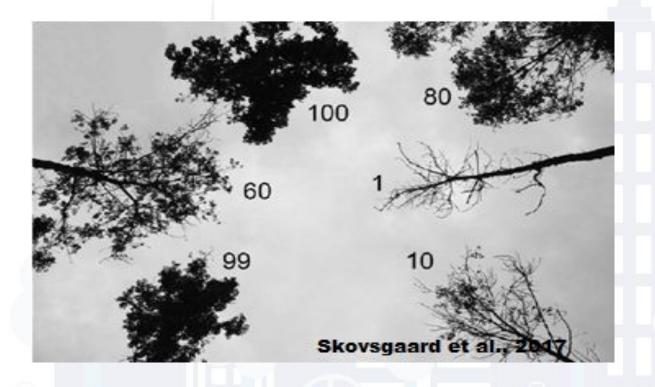
Skopje, North Macedonia 04-06 June 2024

SYMPTOMS

Skopje, North Macedonia 04-06 June 2024

SYMPTOMS

Skopje, North Macedonia 04-06 June 2024



Infection still remains in litter and soil and can infect new shoots after cutting

THE ROLE OF INVASIVE SPECIES IN URBAN FOREST PLANNING Skopje, North Macedonia 04-06 June 2024 MONITORING

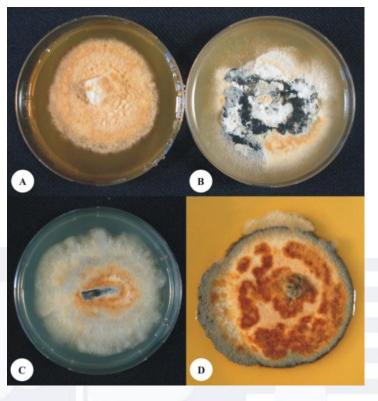
- Annual survey of ash stands

- Annual assessment of tree health condition throughout all monitoring plots

for forest health: healthy (1); weakened (2);
severely weakened (3); drying-up (4); died (5-6);

for ADB: (0) no ash dieback-symptoms; (1) symptomatic shoots with necrosis in 10 % of crown;
(2) symptomatic shoots with necrosis in 10–50 % of crown; (3) more than 50 % of all shoots are symptomatic and (4) tree mortality (Metzler et al., 2012);

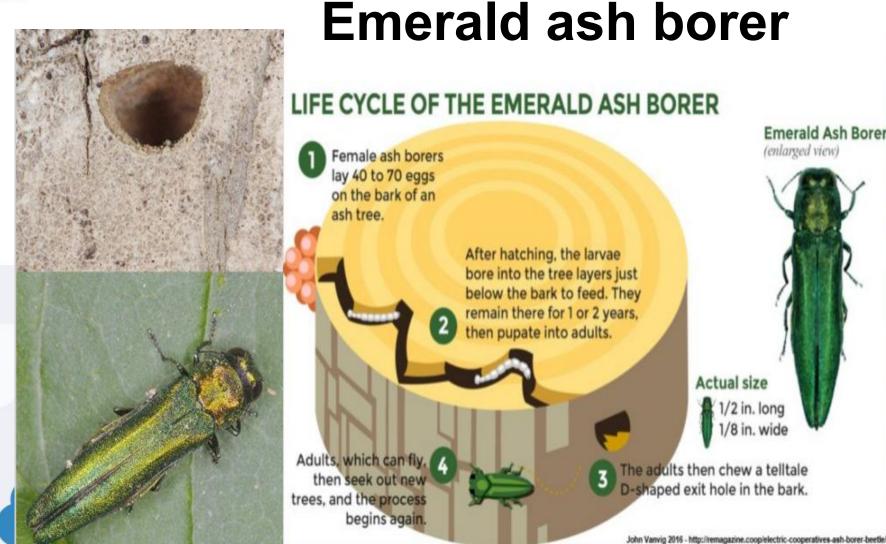
- Measuring the defoliation and part of stem circumference with collar rot (Skovsgaard et al.,2017)


- Identification of *H. fraxineus* and other pathogens

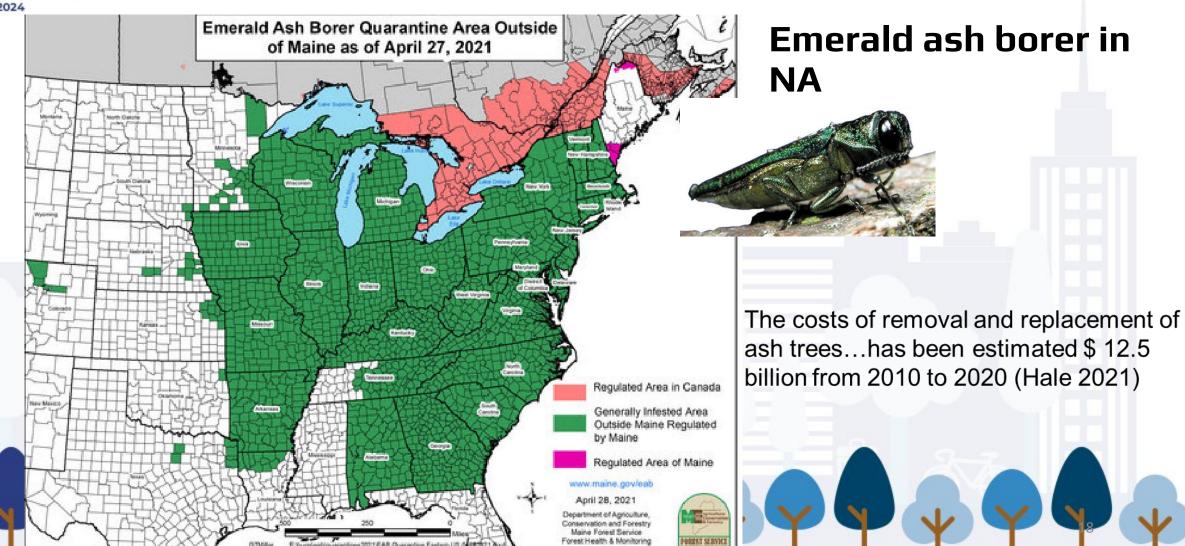
Skopje, North Macedonia 04-06 June 2024

Pure cultures, in lab, 2-3 weeks

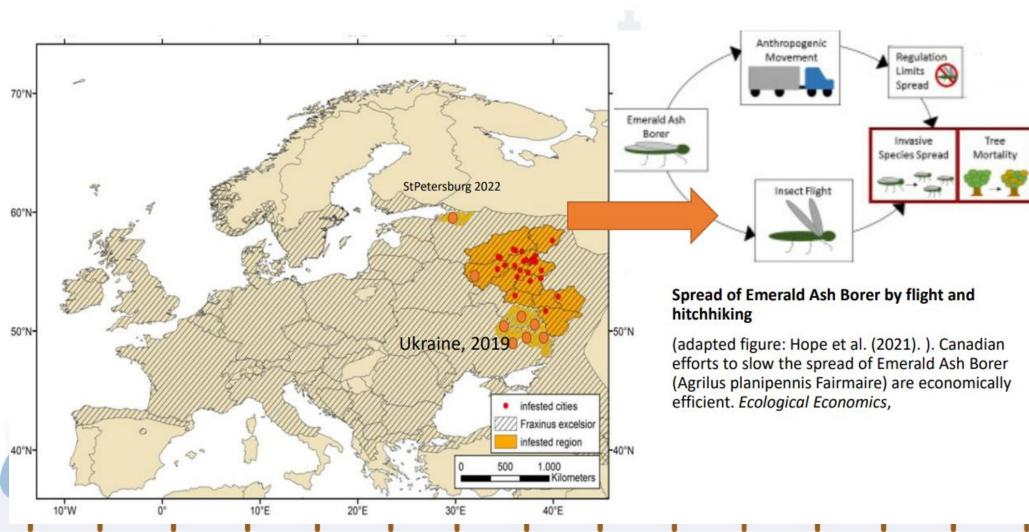
IDENTIFICATION


PCR in lab, 1 day

Skopje, North Macedonia 04-06 June 2024


Emerald Ash Borer

Skopje, North Macedonia 04-06 June 2024


en2021EAB Quarantine Eastern US

THE ROLE OF INVASIVE SPECIES IN URBAN FOREST PLANNING Skopje, North Macedonia 04-06 June 2024

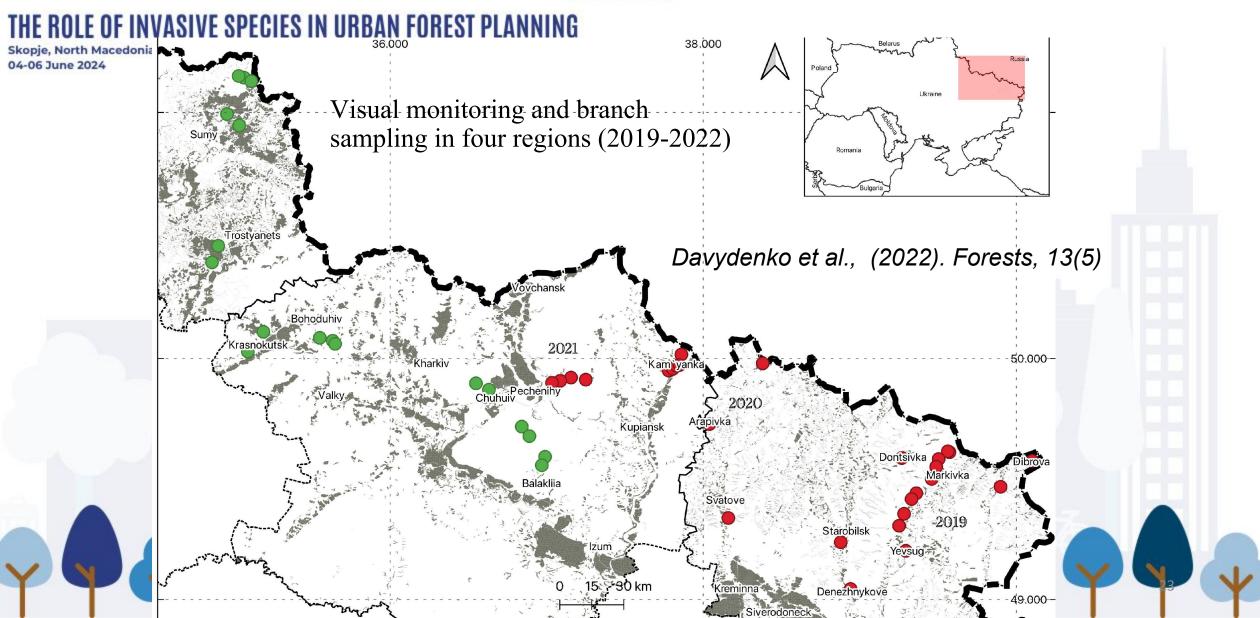
Skopje, North Macedonia 04-06 June 2024

Two new invasive ash pests: what does in the future hold? (2022-2024)

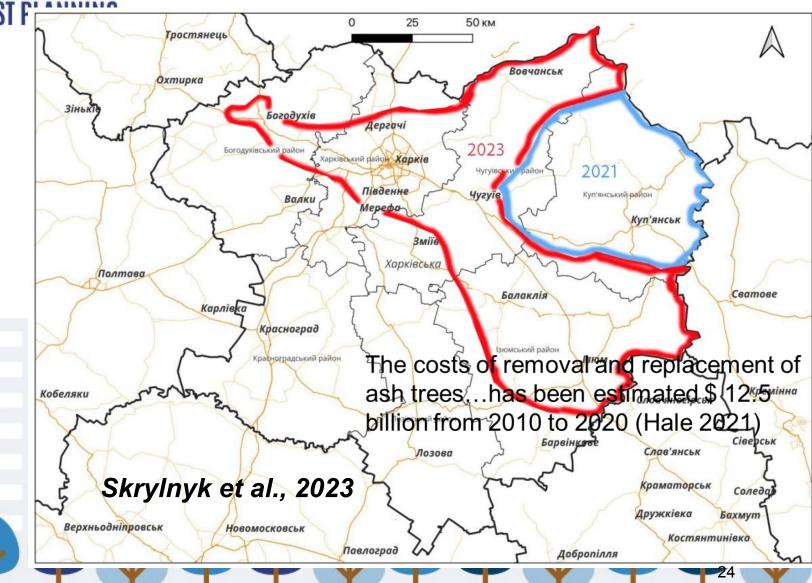
Skopje, North Macedonia 04-06 June 2024

Management and control: to study the possible effects of co-infection of pest and pathogen

- mycobiome of ash trees showing different phenotypic response to ADB or/and EAB and their temporal variation in fungal/pest communities
- to identify the total fungal community and a complex of parasitoids associated with the invasive EAB and their galleries using molecular methods (next-generation sequencing)
- to provide the detailed information on potential agents of biological control and to model the effects of potential biological agents on EAB



Skopie, North Macedonia Management and control: to model the 04-06 June 2024 combined effect of ADB and EAB on ash to compare the traits of EAB seasonal development in different ranges and to reveal the climatic variables that may affect its viability; • to predict the EAB expansion range in Ukraine and westward; to compare the most significant parameters outside the current EAB range with those in the native and invasive ranges.



Skopje, North Macedonia 04-06 June 2024

> Visual monitoring and branch sampling in 2023

Skopje, North Macedonia 04-06 June 2024

Infestations of the ADB and EAB on *Fraxinus pennsylvanica* and *F. excelsior* trees in eastern Ukraine

Plot	Fraxinus spp.	Trees Monitored, no. (%)										
		All			Year 2020				Year 2021			
			ADB	EAB	Of those, ADB and EAB	Dead *	Visually Healthy	ADB	EAB	Of Those, ADB and EAB	Dead *	Visually Healthy
		25010	25.88			Lat	hansk region	(LH)		1.10.10.00	10000	
1LH 2LH	F. pen. ^b F. pen.	38 25	1 (3) 0	19 (50) 16 (64)	0	12 (32) 7 (28)	18 (47) 9 (36)	2 (5) 1 (4)	37 (97) 22 (88)	1 (3) 0	29 (76) 14 (56)	0 2 (8)
3aLH	F. pen.	25	0	21 (84)	0	9 (36)	4 (16)	0	(100)	0	17 (68)	0
All LH F. pen. 3bLH, all LH F. ex. ^c x ² test F. pen. vs. F. e.		88 16 ex. d	1 (1) 4 (25)	56 (64) 3 (19)	0 2 (13)	28 (32) 2 (13) n.s.	31 (35) 11 (69) *	3 (3.5) 6 (38)	84 (95) 7 (44)	1 (1) 3 (19) **	60 (68) 7 (44) n.s.	2 (2) 6 (38)
					1	Charkiv regio	on (KH, nort	Invest from	n LH)			
4KH 5KH 6KH	F. ex. F. ex. F. pen.	60 55 52	2	÷		1	5	15 (25) 18 (33) 7 (13)	17 (28) 12 (22) 31 (60)	9 (15) 6 (11) 4 (8)	9 (15) 9 (16) 23 (44)	37 (62) 31 (56) 18 (35)
7KH	F. pen.	45	- 8	-	3		1	3(7)	24 (53)	2 (4)	19 (42) 42 (43)	20 (44)
All KH F. pen. All KH F. ex.		115	2 400	F.pen. vs. F.		50	2	33 (29)	29 (25)	15 (13) n.s.	18 (16)	68 (59)
			X test	г.рен. чэ. г.	£.A.,	Course made	(SU, north	mant farmer	VIII		- 1983 - E	- 12A
8SU	F. ex.	50	20	-	82	Sumy region	-	32 (64)	-	-	31 (62)	18 (36)
95U	F. ex.	50	-	-	2	-	-	27 (54)	-	-	19 (38)	23 (46)
10SU, all	SU F. pen.	25	-	220	52	_	-	8 (32)	-	27	5 (20)	17 (68)
All SU F. ex.		100	x ² test	Epen. vs. F.	- ex.	50	7	59 (59)	7	7 0	50 (50)	41 (41)
			A			All pl	ots (LH + K	H+SUD				
All F. pen.		210	-			-	9	21 (10)	139 (66)	7 (3)	107 (51)	57 (27)
All	E.ex.	231	χ^2 test	F.pen. vs. F.	- ex.	51	5	98 (42)	36 (16)	18 (8)	75 (32)	115 (50)
			10000		Plots	infested by	the emerald	ash borer				
LH + KH F. pen.		185			600			13 (7)	139 (75)	7 (4)	102 (55)	40 (22)
LH + KH F. ex.		131	x^2 test	Epen. vs. F.	ex.			39 (30)	36 (27)	18 (14)	25 (19)	74 (56)

EAB distribution model

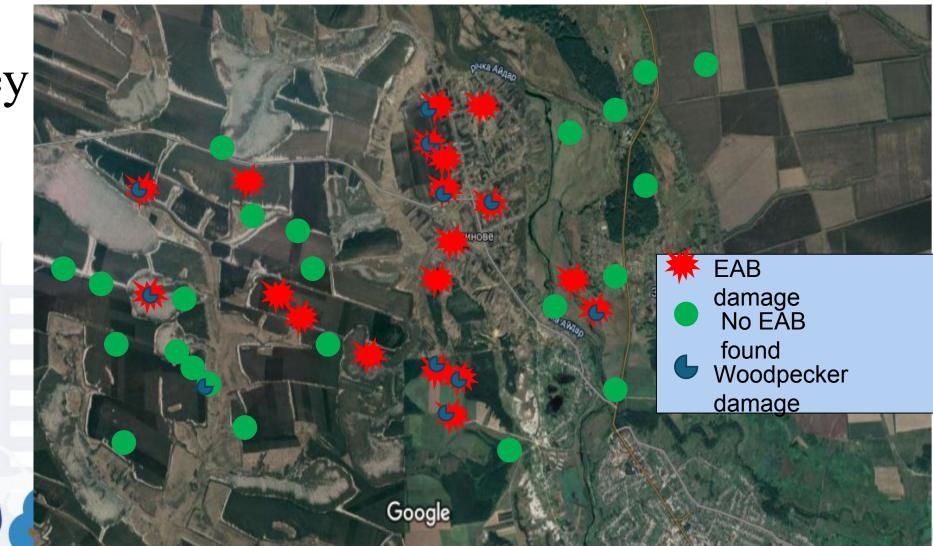
Skopje, North Macedonia 04-06 June 2024

 The geographic distribution of EAB was predicted based on the ecological niche model devised in MaxEnt software, version 3.4.4

V ari abl e	V ari abl e n am e	Definition	B := 11.0C	Mean temp. of the coldest	Average temperature for the three coldest months		
Bio_1, °C	Mean annual temperature	Annual mean temperature	Bio_11, °C	quarter			
Bio_2, °C	Mean diurnal range	The average difference between high and	Bio_12, mm	Annual precipitation	Total annual precipitation		
DI0_2, C	in can ulumariange	low daily temperature	Bio_13, mm	Precipitation of the wettest	Total precipitation for the month with the		
Bio_3,	Isothermality	The ratio of the mean diurnal temperature		month	most precipitation		
timensionless		range relative to the seasonal range	Bio_14, mm	Precipitation of the driest	Total precipitation for the month with the		
Bio_4, °C	Temperature seasonality	Temperature variation over a year by	DIO_14, IIIIII	month	least precipitation		
	Temperature seasonanty	monthly average temperature	Bio_15,	Precipitation seasonality	Precipitation variation over a year by		
Bio_5, °C	Max temp. of the warmest	Monthly mean of daily high temperatures	fraction	Treaphanon seasonality	monthly total precipitation		
510_3, 0	month	for the hottest month	Bio_16, mm	Precipitation of the wettest	Total precipitation for the three months		
Bio_6, °C	Min temp. of the coldest	Monthly mean of daily low temperatures	DIO_10, IIIII	quarter	with the most precipitation		
510_0, 0	month	for the coldest month	Bio_17, mm	Precipitation of the driest	Total precipitation for the three months with the least precipitation		
Bio_7, °C	Temperature annual range	Bio_07 = Bio_05-Bio_06	DIO_17, IIIII	quarter			
BI0_8, °C	Mean temp. of the wettest	Average temperature for the three months	Bio_18, mm	Precipitation of the warmest	Total precipitation for the three hottest		
	quarter	with the most precipitation	DI0_10, IIIII	quarter	months		
BI0_9, °C	Mean temp. of the driest	Average temperature for the three months	Bio_19, mm	Precipitation of the coldest	Total precipitation for the three coldest		
	quarter	with the least precipitation	Dio_17, Huit	quarter	months		
BIO_10, °C	Mean temp. of the warmest	Average temperature for the three hottest	Elev, m a.s.l.	Elevation	Elevation (altitude)		
	quarter	months	- 11 - C				
Davyden	ko et al., (2022), Fore	sts. 13(5)					

Meshkova...Davydenko. In Press

Skopje, North Macedonia Ash trees damaged 04-06 June 2024 by EAB Ash trees damaged by EAB in Luhansk (2019)



Skopje, North Macedonia 04-06 June 2024

First field survey in Ukraine (2020)

Skopje, North Macedonia 04-06 June 2024

> Ash trees damaged by EAB in Kharkiv (Central park) in 2023 (photo by Y.Skrylnyk

Skopje, North Macedonia 04-06 June 2024

Management and control: to identify resistance of ash trees to EAB and ADB

 to develop markers for traits related to tolerance to ADB and EAB and to investigate whether genotypes selected for tolerance were genetically different from susceptible wild populations

A high-quality reference genome for *Fraxinus pennsylvanica* for ash species restoration and research

¹Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA ²School of Biological and Chemical Sciences, Queen Mary University of London, London, UK ⁸Poyal Botanic Gardens, Richmond, Surrey, UK ⁴Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, US/ ⁸USDA Forest Service, Southern Research Station, Saucier, Mississippi, USA ⁸Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas, USA ⁷Forest Health Research and Education Center, University of Kentucky, Lexington, Kentucky, USA ⁸United States Department of Agriculture, Forest Service, Northern Research Station, Delaware, Ohio, USA ⁸Department of Biological Sciences. Norte Dame University, USA

Correspondence Margaret Staton, Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA. Email: mstaton1@utk.edu

Fund: National Institute of Food and

Agriculture, Grant/Award Number: PEN04532: Living with Environmenta

Change (I WEC) Tree Health and Plant

Funding information Erica Waltraud Albrecht Endowmen

Sk

04

nt of Abstract

Green ash (*Fraxinus pennsylvanica*) is the most widely distributed ash tree in North America. Once common, it has experienced high mortality from the non-native invasive emerald ash borer (EAB; *Agrilus planipennis*). A small percentage of native green ash trees that remain healthy in long-infested areas, termed "lingering ash," display partial resistance to the insect, indicating that breeding and propagating populations with higher resistance to EAB may be possible. To assist in ash breeding, ecology and evolution studies, we report the first chromosome-level assembly

the identification of candidate genes for important traits including potential EAB-resistance genes, and an investigation of comparative genome organization among Asterids based on this reference genome platform (Huff et al. 2021).

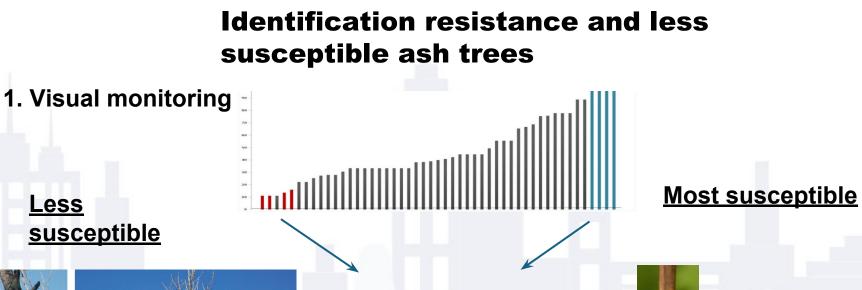
ARTICLES https://doi.org/10.1038/s41559-020-1209-3 ecology & evolution

Check for updates

STPLANNII Convergent molecular evolution among ash species resistant to the emerald ash borer

Laura J. Kelly^{1,2}², William J. Plumb^{1,2,3}, David W. Carey⁴, Mary E. Mason^{3,4}, Endymion D. Cooper¹, William Crowther^{1,6}, Alan T. Whittemore⁵, Stephen J. Rossiter¹, Jennifer L. Koch^{3,4} and Richard J. A. Buggs^{3,2,2}

Recent studies show that molecular convergence plays an unexpectedly common role in the evolution of convergent phenotypes. We exploited this phenomenon to find candidate loci underlying resistance to the emerald ash borer (EAB, *Agrilus planipennis*), the United States' most costly invasive forest insect to date, within the pan-genome of ash trees (the genus *Fraxinus*). We show that EAB-resistant taxa occur within three independent phylogenetic lineages. In genomes from these resistant lineages, we detect 53 genes with evidence of convergent amino acid evolution. Gene-tree reconstruction indicates that, for 48 of these candidates, the convergent amino acids are more likely to have arisen via independent evolution than by another process such as hybridization or incomplete lineage sorting. Seven of the candidate genes have putative roles connected to the phenylpropanoid biosynthesis pathway and 17 relate to herbivore recognition, defence signalling or programmed cell death. Evidence for loss-of-function mutations among these candidates is more frequent in susceptible species than in resistant ones. Our results on evolutionary relationships, variability in resistance, and candidate genes invaded by this beetle.


> ..to find candidate loci underlying resistance to the emerald ash borer... In genomes from these resistant lineages, we detect 53 genes with evidence of convergent amino acid evolution...., Seven of the candidate genes connected to the phenylpropanoid biosynthesis pathway and 17 relate to herbivore recognition, defence signalling or programmed cell death. (Kelly et al. 2020)

Skopje, North Macedonia 04-06 June 2024

2. Inoculation

3. Data analysis

THE ROLE OF INVASIVE SPECIES IN URBAN FOREST PLANNING Skopje, North Macedonia 04-06 June 2024 Take-home messages

- International strategy with regular updates!
- Still gather science information (EAB +ADB)

 More research is required to identify ash genotypes possessing resistance to both ADB and EAB what frequency of ADB resistance trees remains tolerant to EAB and Whetherocontibined/EAB esist ADB esistadk 5% expected to be more lethal? individuals .

Skopje, North Macedonia 04-06 June 2024

Take-home messages

FORMAS

Skopje, North Macedonia 04-06 June 2024

ACKNOWLEDGEMENT

Funding support:

- Swedish Foundation for Strategic Research (SSF) project UKR22-0060 and UKR24-0013
- Swedish Research Council Formas (project no. 2023-01065)