"120 YEARS WITH CHESTNUT BLIGHT: WHICH LESSONS HAVE WE LEARNED?"

Kiril Sotirovski

Hans Em Faculty of Forest Sciences, Landscape Architecture and Environmental Engineering

"Ss. Cyril and Methodius" University in Skopje

Annual meeting of the Forest Invasive Species Network for Europe and Central Asia (REUFIS) on THE ROLE OF INVASIVE SPECIES IN URBAN FOREST PLANNING Skopje, 4-6.VI.2025

Overview Cryphonectria parasitica

INTRODUCTION

Keywords:

invasive species, introduced pathogens; chestnut blight; *Cryphonectria parasitica* History of distribution and spread; Chestnut blight, canker

Kastanienrindenkrebs

Cancro del Castagno

Kastane Kanseri

Рак по питомиот костен

SPECIFIC ASPECTS

Reproduction; Hypovirulence; Vegetative compatibility and MAT; Various methods for biological control.

Introduced "forest" plant pathogens = invasive species

- Phytophthora cinnamomi
- Dutch Elm Disease (*Ophiostoma ulmi & O.novo-ulmi*)
- Chestnut Blight (Cryphonectria parasitica)
- Ash Dieback (*Hymenoscyphus fraxineus*)
- Canker Stain of Platanus (*Ceratocystis platani*)
- Box Blight (Calonectria pseudonaviculata & C. henricotiae)
- Dothistroma Needle Blight (Dothistroma pini & D. septosporum)

THE AMERICAN CHESTNUT CASTANEA DENTATA

0

HYPHAE

NATIONAL CHESTNUT SYMPOSIUM 13-15th October 2022, Aydin Adnan Menderes University, Turkey

Host tree species

European sweet chestnut Castanea sativa up to 35m tall (4m diameter)

Host tree species

Chinese chestnut -Castanea mollisima up to 18m tall, up to el. 2,440 m

Host tree species

Japanese (Korean) chestnut *Castanea crenata* up to 9m tall, up to el. 900 m

Initial change of color of the bark

Cracking of bark

Epicormic shoots

Yellowish-white mycelium is visible under the bark

Stromata

Pycnidia

Hypovirulence = decreased virulence of the pathogenic fungus = the host plant survives

Active (deadly) cankers vs passive (healing) cankers

Active canker

Passive canker

Virulent isolates

Hypovirulent isolates

Anastomosis between compatible isolates

Vegetative incompatibility in *C.parasitica*

Assessing vc types of isolates of *C.parasitica*

No sexual reproduction if isolates are of same mating type (MAT)

In sexual reproduction between isolates of a same vc type, the progeny is of the same vc type

No segregation of *vic* genes

In sexual reproduction between 2 isolates different in 4 vic genes, the progeny $2^4 = 16$ vc types!!!!

Control of chestnut blight

Direct treatment with hypovirulent paste

Inoculations are labor-heavy and can be dangerous

Hypovirulent strains are formulated as mycelium discs with polyethylenen glycol and hydroxypropyl methylcellulose, loaded into lead-free pellets that are used as carriers to inoculate cankers on chestnut stems by shooting an airgun.

A. Kunova, C. Pizzatti, M. Cerea, A. Gazzaniga, P. Cortesi (2017) New formulation and <u>delivery method</u> of *Cryphonectria parasitica* for biological control of chestnut blight.

Trials investigating conversion of cankers induced by virulent inoculations by local natural hypovirulence

Canker 15 (remains virulent in the first year)

2015 05 13

2014 11 28

2015 10 14

Canker 17

2014 11 28

17a is hypovirulent

2015 05 13 17b, 17c are hypovirulent

2015 10 14 17a, 17b, 17c are hypovirulent

Investigating presence of *C.parasitica* in healed cankers (hypovirulent and virulent)

